
evelopments in artificial

intelligence (AI) injustices have

rapidly taken a turn for the worse in

recent years. Algorithmic decision-

making systems are used more than

ever by organizations, educational

institutions, and governments looking

for ways to increase understanding

and make predictions. The Free

Software Foundation (FSF) is working

through this issue, and its many

scenarios, to be able to say useful

things about how this relates to

software freedom. Our call for papers

on Copilot was a first step in this

direction (see: u. fsf. org/3i5 ).

Bulletin Issue 40

Spring 2022

page 1: Unjust algorithms

page 3: Overcoming the hurdle of

“industry standard” software in

education technology

page 5: Old but not forgotten

page 7: The need for free software

education now

page 10: Verifying free software: The

basics

Contents

Unjust algorithms
By Zoë Kooyman

Executive Director

1

Though complex, we are still

talking about proprietary software

systems which integrate AI. Often,

they are algorithmic systems where

only the inputs and outputs can be

viewed. It is trained with a selection

ofbase categories ofinformation, after

which information goes in and a

verdict comes out — but what led to

the conclusion is unknown. This

makes AI systems less

straightforwardly understandable,

even by the people who wrote the

code.

These systems (referred to as

black box systems) can have the

potential or intent to do good, but

technology is not objective — and at

the FSF, we believe that all software

should be free. And when it comes to

governments, they have the

responsibility to demand for the

D

FSF's Lemote

Yeelong, the

first fully free

software-

compatible

netbook

(see page 5).



nationality, low income, and “non-

Western appearance” as big risk

indicators for fraud. Because of

people’s blind trust in technology, this

first system was used to then also

teach another algorithm, this time

affecting the childcare allowance unit.

The agencies, emboldened by the

data provided by the system,

ruthlessly penalized the families by

withdrawing their aid and fining them

tens of thousands — sometimes

hundreds of thousands — of Euros.

The debts ruined lives, and led to

people losing their homes and their

relationships. Some even lost custody

over their children. The whole affair

also led to the resignation ofthe entire

Dutch cabinet. Citizens were

discriminated against without their

knowing, and they were unjustly

denied knowledge as to why they

were treated this way, nor given a

chance to perform any research, to

question the results of the system, or

to defend themselves at any point of

the process.

This is just one story ofmany that

shows us what is at stake, and it

shows the snowballing and disastrous

effects of the lack of free software in

government, while also revealing our

lack of understanding of the

consequences of using machine

learning. In the EU, regulators have

taken note of this scandal as a

warning. European Commission

executive vice-president, Margrethe

2

software they use to be free, and the

public has a right to the software. The

scale to which the increased use of

artificial intelligence is affecting

people’s lives is immense, making this

matter of computational sovereignty

all the more urgent.

For regulators around the globe,

the dangers involved in using AI

haven’t gone unnoticed either. In late

2018, both the United States and the

European Union (EU) started working

on obtaining guidance and forming

regulations to deal with the

proliferation and pervasive use of AI.

In September 2021, Brazil’s congress

passed a bill that creates a legal

framework for AI.

But the acknowledgment of the

fast-paced integration of AI into our

society without proper oversight

didn’t stop US tax agencies from

recently trying to implement facial

recognition for its systems. Worth

exploring is the situation where

26,000 people were affected during

the Dutch toeslagenaffaire (Dutch

childcare benefits scandal) and 1,675

children were removed from their

parents’ custody during this scandal.

The Dutch tax office that

regulates social benefits used an AI-

based software system to automate

the identification of errors and fraud.

The system’s training data blatantly

violated privacy laws, and led to

biased enforcement. It did so by

flagging data points such as dual



Vestager, said the toeslagenaffaire is

“exactly what every government

should be scared of.” In proposed

legislation, they speak of adding

checks and balances conducted by

humans, and the European AI Act thus

far proposes a restriction of the use

of so-called “high-risk” AI systems

and banning certain “unacceptable”

uses that would protect people from

such a scenario through what they

call a “pyramid of risks.”

But it is not enough. Without the

freedom to inspect the source code

(which includes the software’s

algorithms), we create a loophole

where the organization ends up

policing its own actions. When a

system is nonfree, the argument for

“enforcement” of regulations can

never truly be made. What the draft

legislation typically lacks is the

central argument that software

should be free (as in freedom). We do

not yet have an elegant definition as

to what elements must be shared

along with the program when we are

talking about machine learning, but

we know we need to be holding up

the GNU General Public License’s

(GPL) definition of source code as the

preferred form for modification, and

the importance of installation

information, as the guiding lights for

charting the right path. In this case,

had it been made public what

software and what identifiers were

used to teach the system how to

3

ducators who try to teach free

software in education commonly

run into an artificial barrier that

usually sounds something like, “We

cannot use that software because it

is not industry standard.” This

situation is a self-fulfilling prophecy.

The institution expects proprietary

software to be used in the workplace,

the institution teaches students

proprietary software, and the

students end up using proprietary

identify its victims, it may have been

given less space to cause this much

harm. Systems that play a major role

in how our lives unfold should offer

the possibility to be checked, and

checked again.

You can make a difference as these

laws and regulations are taking shape.

Many governments have initiatives

now that are open to public feedback.

Get informed on where artificial

intelligence proprietary software

systems are used and on its dangers,

and demand that your government

deploys free software and protects its

computational sovereignty:

government software must be free

software and must be readily

available for inspection by its citizens.

Overcoming the hurdle of
“industry standard” in
education technology
By Michael McMahon

Web Developer

E



4

a well-known after-school program.

I taught project-based learning

through screen printing with vector

graphics using Inkscape instead of

Adobe Illustrator, photo editing using

GIMP instead of Adobe Photoshop,

drawing from a blank canvas with

Krita instead of Adobe Photoshop,

editing lots of photos in bulk on the

command line with ImageMagick,

video editing with Kdenlive instead of

Final Cut Pro, and 3D modeling with

Blender instead of AutoDesk Maya.

Professional video editing

software is a particularly good

example of why industry standards

should be reevaluated from time to

time as all nonlinear video editors

work with approximately the same

workflow. Of these, Blender

specifically has broken the mold and

become known as industry standard

within the cinematic effects industry,

all while respecting the user’s

software throughout their lives. The

prophecy is fulfilled.

Quality free software tools are

often perceived to be lacking in the

fields of design, audio, and

engineering. There is always room for

improvement, but typically a free tool

exists already.

For most 2D graphic design tasks,

GNU Image Manipulation Program

(GIMP), Krita, Inkscape, and

ImageMagick will do the job. Most of

the complaints regarding, for

example, GIMP boil down to the fact

that it does not work exactly the same

as Adobe Photoshop — as in the

menus, buttons, keyboard shortcuts,

and selection interface are not exactly

the same. However, these complaints

are made from unreasonable

expectations. If you know how to use

one program, it is often possible to

quickly adapt and learn the

differences after watching a tutorial

video. GIMP, Krita, Inkscape, and

ImageMagick are worth the time

investment to learn.

It is nearly always better to teach

a process or approach than to teach

to a specific piece ofsoftware because

it teaches the concept instead of the

motions. Moreover, just because

something is perceived as industry

standard does not mean that it ought

to be, especially ifit deprives students

oftheir freedom. I have personally had

success teaching multimedia creation

processes using free software tools in

With free software, students are in

control oftheir learning and can share

their freedoms with others.



hrough a complicated series of

events, I briefly ended up in a

situation where my only working

computer was one of the FSF’s

Lemote Yeeloongs, the first fully free

software-compatible netbook ever

released. Those who have been in the

free software community for long

enough will remember how coveted

this machine was back in the “bad old

days” of free software, when systems

compatible with a free BIOS were

even more rare than they are today.

Even in 2008, just what it could do

was severely limited by its single-

core 800MHz processor and

somewhat meager amount of

memory. Videos online can also attest

to its whopping three and a half

minute boot time. All of this coupled

with the Yeeloong’s other quirks make

it a good opportunity to reflect on

the state of free software on older

machines.

values key to a free society: sharing,

social responsibility, and

independence. If you find an instance

where your school should be using

free software instead of proprietary

software, sign our Give Students

#UserFreedom petition today (see:

u. fsf. org/3m2 )!

5

freedom.

Microsoft, Adobe, and other major

companies offer their software to

schools for free or at a reduced rate

so that students will be unlikely to

use anything else throughout their

lives. Teachers often find this to be

justifying, but they cannot share the

software with the students at home

or after they finish their education.

Teaching with free software can help

level the digital divide.

The beauty offree software is that

every little piece or program that is

swapped out improves the students’

ability to study the environment that

they use. Students are naturally

inquisitive. When a student asks how

something works, a teacher should be

able to point to an answer, which is

only possible ifthe software that they

use is free as in freedom. With its

focus on study and collaboration, free

software is far more suited to the

spirit of pedagogy than proprietary

software, which causes dependence

and inflicts abuse upon its users. Free

software is the only kind of software

that does so by allowing the student

to run, copy, distribute, study, change,

and improve the tools that they use.

Teaching with free software has

been proven to work at Penn Manor

School District in Pennsylvania,

Kerala, India, as well as other places.

It can work anywhere. Using free

software in the classroom

communicates the importance of

Old but not forgotten
By Greg Farough

Campaigns Manager

T



6

The oldest of old machines are in

a tricky place when it comes to free

software. Except in extremely rare

circumstances, the days when the

kernel Linux could fit on any kind of

floppy disk are long behind us. Yet

given that the “top of the line” when

it comes to laptop freedom is a

different machine released in 2008,

the X200, and that most FSF staffers

run Trisquel 10 on these machines,

one would assume that the Yeeloong

is similarly well-supported. Well, this

isn’t the case. You see, the Yeeloong

isn’t just an old machine. It’s an old

machine on a very rare architecture:

mipsel64.

As all GNU/Linux distributions

and operating systems generally are

limited in the number of CPU

architectures they can target, this puts

the Yeeloong at even more of a

disadvantage when it comes to

support. From the day of its release,

it never supported nonfree operating

systems like Windows, but now, even

most free systems have left it behind.

The Yeeloong I used ran an installation

of Parabola GNU+Linux that is now

too old to update, and while I sketched

the outline of this article, support for

the Yeeloong and related systems

were dropped from OpenBSD, the

only distribution of that operating

system to have ever supported it. This

leaves the Yeeloong in the lurch.

Without significant manual

intervention, it can no longer receive

security and software updates, and

given its rarity, likely never will again.

This invites the question: what

can the Yeeloong do nowadays?

Recently, and for arguably good

reasons, “retrocomputing” has come

into the spotlight in certain sections

of the free software community. Most

of these experiments are centered

around, or at least feature use of, the

“small web” — old or alternative

network protocols like Gopher,

Gemini, or Spartan. Although it was

something ofa challenge to get a client

compiled on the Yeeloong, it’s well

suited to use cases like these. It’s no

surprise that older protocols like

Gopher pare a user’s browsing

experience down to text, but Gemini,

a protocol that is only just finalizing

its written standard, is also a good

way of keeping connected while

avoiding what we’ve termed the

JavaScript Trap (see:

u. fsf. org/fb7 ). By design,

Gemini pages are forbidden from

executing programs on a user’s

machine. Positioning itselfas a middle

point between a protocol as

“lightweight” as Gopher and one as

“heavy” as HTTP, Gemini takes the

Web back to its roots in simple

hypertext, albeit with some baked-in

TLS and support for other media

formats.

TLS? Therein lies the rub for

these old machines. Even if the

Yeeloong’s processor could support



7

aking the choice to use free

software in the classroom helps

us create learning environments that

foreground questions of value. This

can be illustrated by a passage in

Confucius’s Analectswhere the skilled

mechanic is illustrated as sharpening

their tools before they are able to do

their work well. In the 21st century,

and in the context of digital learning

M

experience can be as simple as

choosing not to boot to X11 or

Wayland, and getting as far as you can

with your daily tasks on a shell like

Bash running in the framebuffer. For

every user who chooses to take this

approach, there are at least ten

laptops in varying states of repair

languishing in the dumpster or

electronics recycling shop. As most of

my own machines are sourced this

way, I should know! No matter what

circumstances have brought you to

that blinking cursor on that old

machine, I hope you’ll spare a thought

to their upkeep, whether that’s

ensuring the program you develop is

able to be compiled on old or rare

architectures, or simply loading an old

laptop up with GNU/Linux, and

passing freedom on to a friend.

The need for free software
education now
By Greta Goetz, PhD

Assistant Professor, University

ofBelgrade

the JavaScript transport behemoth

known as the modern Web, without

an up-to-date implementation of key

security components like Pretty Good

Privacy (PGP) or Transport Layer

Security (TLS), it can’t be trusted to

escape any recent vulnerabilities that

might compromise a user’s privacy

and security.

Too often, we’re led to think that

newer technology is intrinsically

better than anything that came before

it. If you’re reading this Bulletin, you

most likely know that this isn’t the

case. The advertisements put out by

Apple and its ilk don’t take the time

to mention what advancements (or

encroachments) it makes to your

freedom or ability to do a particular

task. If you splurge for that new

computer, chances are that you’ll be

browsing the same Web sites, writing

the same types of documents, and

engaging with the same kinds of

media as you did with the old one.

Independent of the environmental or

economic reasons why someone

might stick with an older machine,

there’s an argument from simplicity:

if the machine you’re currently using

does all that you need, why should

you feel somehow “pressured” to buy

a new one?

Naturally, paring down your

computing environment doesn’t need

to involve purchasing a different set

of hardware, even if that hardware’s

old and “outdated.” Living the retro



8

“Convenience,” to cite an edifying

poem by W. S. Merwin. It challenges

us to to see knowledge as something

that is not passively downloaded but

requires active engagement,

discovery, and selection. To “sharpen

our tools” is to learn something about

learning and how it is embedded in

social habit and institutional systems.

Who is the study offree software for?

Free software education is for

everyone, not just programmers. As

such, free software shares the learning

values set out by educationalists such

as Paolo Freire and John Dewey.

Freire sought to create learning

contexts where all students would feel

motivated to generate contributions

and not be overwhelmed by systemic

power. He emphasized the importance

of teaching students to make

meaningful decisions rather than be

carried away by the tides of the

trends of the age. Dewey saw

education as a cure for societal

confusion and championed freedom of

mind, rooted in freedom ofaction and

experience in co-creating collectively

valuable goods. Free software

reminds us ofour duty to think ofthe

privilege (i.e. right, priority, law) of

knowledge and to safeguard access to

the encoded knowledge that informs

and shapes our lives.

When is free software education?

Our journey up the freedom

ladder (see: u. fsf. org/3f1 )

begins whenever we are ready to take

environments, to sharpen tools would

mean to know not just how the digital

tool works but what the digital tool

means with respect to the place of

the human in the world. This will be

explored by considering the five Ws:

what free software education is, who

it is for, when and where it takes

place, and why our active role as

digital makers, not just passive users,

is central to the meaning of free

software education.

What is free software education?

Most concretely, free software is

a set of tools such as software

packages and programming libraries,

frameworks, and languages, which

are released under a free software

license. More abstractly, free software

represents a set of values. These are

the freedom to run, copy, distribute,

study, change, and improve the

software — the last of which is

possible because it can be studied to

begin with. Free software education

teaches what the tool is not just in

terms of its code but also its function:

demonstrating what a human-

centered tool looks like.

Free software teaches us the

significance of the freedom to think

and make informed decisions that

champion human agency. It does so

by offering myriad choices for

personal or local customization and

types of support. It allows us to

question whether we really need to

use locked-in software silos out of



learning.

Free software education can take

place in all learning environments, not

just programming, and not just in the

classrooms ofany discipline. Learning

to assemble digital tools in our lives

such that they help us help each other

continue to learn and share is an

exercise in noticing what is worth

being cared for and what is worth

doing.

Why free software education?

The free software movement

encourages us to find ways to leave

digital traces on terms that respect

collective understanding and

contributory practices. Learning

about free software gives experience

in our generative potential and helps

us learn to be makers, not just users,

conscientiously assembling, ifnot also

creating, our digital environments.

Like the Confucian mechanic, the

person learning about free software

becomes skilled in identifying,

valuing, relating to, and championing

the human place in a technical world.

Understanding this can help a person

extend this learning beyond the

workplace to life in general.

Prompts for further conversation:

1) What does digital freedom mean
to your own learning process?

2) How does free software teach the
power of sharing?

Tag your posts as
#FreeSoftwareEducation!

9

a step towards software freedom.

Even if we know nothing about

programming, we can still explore the

value of free software. Some of these

values have been considered above.

Free software education, while

centering on a set of values, also

evolves with developments in

computing.

Now is the time to think deeply

about what free software means when

artificial neural networks are being

trained on data sets containing or

referencing much of the

transgenerational knowledge that we

are born into, which is to say, the

other forms of coding perpetuated

through publication, training,

education, and so forth. The question

offree software is always current but

is especially timely now that the

largest artificial neural networks

obscure sources while doing work,

thus affecting access to knowledge.

Where does free software education

take place?

The existence of free software

invites us to build software starting

from where we are, according to local

needs. Tailoring tools does involve a

time investment. However, this is an

investment that teaches us about the

principles behind the software and

allows us more control over the data

processed by the software. This

means more deliberate decisions as

to how software is configured in

design that supports ongoing mutual



o you found a program which you

would like to use.

Congratulations! Now what? How do

you know ifyou can use this program

in freedom? A little birdie told you it

is free software, but how can you be

sure your avian friend knows what

they are talking about?

Joking aside, if you plan to use a

program in freedom with the

expectation you will be able to run,

copy, distribute, study, change, and

improve to it as you wish, you’ll want

to verify it is free software first. The

easiest way to tell if you have a free

program is to see if it is in the Free

Software Directory. The Directory is

a collection of over 16,000 free

software programs which have been

verified for freedom. If it is not in the

Directory and you are new to the

subject, this article will provide some

basic tips in determining a program’s

license.

S

10

Verifying free software: The
basics
By Craig Topham

Copyright & Licensing

Associate

An interesting aspect of software

licensing is that there is no single

official way to properly license a

program. The FSF certainly has its

recommendations, and there are

other groups with their own ideas as

to how a program should be properly

licensed. However, over the years

(and as software freedom and

licensing literacy has increased) some

generally accepted methods have

been established. This is not always

the case, so if you have any doubts

while trying to determine the

licensing of a program, the best thing

to do is to reach out to the maintainer

of the program to clarify.

Once you have obtained a copy

of a program’s source code, the first

step is to look for a file named

README, which is the most common

file name for the purpose of

documenting the details ofa program.

It is typically found in the main

directory of the source code. There

are other names which might be used,

such as RELEASE or RELEASE NOTES,

but it is fair to assume that a file will

be available with the program’s

details. A maintainer wishing for their

program to be increasingly used and

redistributed will provide all the

details of not only the program’s

licensing, but also notes on

dependencies, the project’s history,

contact information, a copyright

notice and other information in the

README file. It also might have



program’s license from the

recommended steps above, there are

some additional steps you should

take. Check the licenses of

dependencies, plug-ins, or other

programs required to build and make

use of the program. If we are lucky

the maintainer of the program listed

the dependencies in the README file.

They may also be distributed with

their source code, so look for

directories titled “lib,” “resources,”

“tools,” “plugins,” or “modules.”

Essentially, you’ll repeat the same

steps in the other packages, starting

with the README and LICENSE files.

This can be a daunting task, but just

be patient and tackle the list one

project’s source code at a time.

Ifyou would like to learn more or

practice examining a program’s

licensing, then join us at one of our

weekly Free Software Directory

where we do this collectively to

review new packages to be added to

the list. Meetings are held every

Friday 12:00 to 15:00 EDT in #fsf on

Libera Chat. All are welcome.

Get 10% off!

Support the FSF by

purchasing FSF merchandise!

Visit ssshhhoooppp...fffsssfff...ooorrrggg and

enter discount code

SPRING2022, 6/15/22 - 9/1/22

11

additional details about the licensing,

including any additional permissions

or restrictions determined by the

copyright holder.

A copy of the license is also a file

typically found in the main directory

of the source code, but it may be

stored in a sub-directory like doc/ or

LICENSES/. The title of the file may

vary. Look for a name like COPYING

or LICENSE, or it might be the name

of the license itself like GPL or

APACHE.

Once you have found the license,

take a moment to examine it. It is

important to make sure the license

you have received has not been

altered, because that could introduce

legal issues and could even render the

program nonfree. For your

convenience, the FSF has a list of

reviewed licenses with links to their

corresponding license text so you can

compare it with the license you

received with the code. If it is an

entirely unaltered GNU license, you

are set — freedom secured! If it isn’t

a GNU license, the list also provides

additional details of many licenses

including GNU license compatibility. If

you have any questions about the

license you found, the licensing and

compliance team, with the help ofour

dedicated and knowledgeable

licensing volunteers, are available to

answer your questions at

licensing@fsf. org.

After successfully verifying the



Donate to the FSF with Bitcoin:
15R987t9AoqRLxDkQ

evr2AVz8GSqvwMJvC

Copyright ©2022
Free Software Foundation, Inc.
The articles in this Bulletin are
individually licensed under the
Creative Commons Attribution-
ShareAlike 4.0 International license.
https: //creativecommons. or

g/licenses/by-sa/4. 0/

Published twice yearly by the Free
Software Foundation, 51 Franklin
Street, 5th Floor, Boston, MA 02110-
1335, (617) 542-5942
info@fsf. org

This Bulletin was produced using
all free software, including Inkscape,
Scribus, and GIMP.

How to Contribute

Associate Membership:

Become an associate member of
the FSF. Members will receive a
bootable 16GB USB card, email
forwarding, and an account on
the FSF's Jabber/XMPP server.
Plus: participate in our members
forum at
forum. members. fsf. org! To
sign up or get more information,
visit member. fsf. org or write
to membership@fsf. org.

Online: Make a donation at
donate. fsf. org, or contact
donate@fsf. org for more
information on supporting the
FSF.

Jobs: List your job offers on our
jobs page: fsf. org/j obs .

Free Software Directory:

Browse and download from
thousands of different free
software projects:
directory. fsf. org.

Volunteer: To learn more, visit
fsf. org/volunteer .

LibrePlanet: Find local groups in
your area or start your own at
libreplanet. org! And join us
online for the yearly LibrePlanet
conference next spring.

Free Software Supporter: Receive
our monthly email newsletter:
fsf. org/fss .

IMAGE CREDITS

Page 1: Photo by Greg Farough

Copyright © 2022.

Page 4: Image by Michael McMahon

Copyright © 2022.

Page 10: Image by Craig Topham

Copyright © 2022.

All images Copyright © Free Software

Foundation, Inc., licensed under a

Creative Commons Attribution

ShareAlike 4.0 International license.


