
he most important work of the

Free Software Foundation (FSF)

is to promote and defend computer

freedom for users. Since the

T

Bulletin
Issue 39

Fall 2021

page 1: Your support helps

determine the future of the FSF

page 3: Keeping track of freedom

while managing packages

page 6: Nominate someone for a free

software award today

page 6: LibrePlanet 2022: Living

Liberation

page 7: About the FSF's work in

2021

page 7: Thank you...

page 8: Freedom for authors and

readers: talking with Nicholas

Bernhard of Nantucket E-Books

page 10: The fundamentals of the

AGPLv3

page 11: A note from the makers of

this Bulletin

Contents

Your support helps
determine the future of the
FSF
By GeoffKnauth

FSF President

1

As the years have passed, many

organizations have chosen to

advocate for aspects of free software

that are easier for businesses and

users to adopt than true user

freedom, and while that has led to

widespread incorporation of free

software into the infrastructure of

most computing now, that adoption

rests largely on convenience. There is

always a danger that the rights that

users must have could be watered

down or ignored altogether. It is the

FSF's obligation to make sure that

does not happen, that we never forget

there are forces that would corrupt

the intent of the free software

movement, by removing the

movement's idealism and replacing it

with mere opportunism. Free

software could then be mistaken for

product without cost because of

donated labor, or product without

soul because it was not made with

the intent of freedom to share and

develop over time.

Some developers may indeed just

beginning of the Foundation in 1985,

the goal was not just a GNU system

of software that maximizes user

freedom, but also robust advocacy

for that freedom.



sometimes for two hours, or one hour,

or six hours. It has been both a

struggle and a team effort. We

engaged outside consultants to offer

suggestions and evaluate ideas for

good governance, and for improved

coordination in communication.

The intermediate results being

crafted are a Board Member

Service Agreement, a Code of

Ethics, and a transparent process

for bringing new people onto the

Board, people with free software

spirit who can help build the future

of the FSF. This process will

involve associate members of the

FSF through including them in the

nominations process and

discussions in the selection process.

This work is still ongoing, but

progress is substantial and I think

we are nearing a point where the

free software community can

evaluate it. You, members of this

community, are welcome and

encouraged to participate in this

process by joining the FSF. As we

move forward in renewal, I mostly

ask that we remember why we are

here: free software and protecting

the freedom of computing for users.

We must preserve those core

values, as we strive while being

different to be as decent and

considerate of each other as we

possibly can.

2

want their software to be used, but

the best developers want their

creations to be inspiring and part of

a learning process. They want their

software to be extended and

improved by others; like good

parents they want their children to

thrive and have independence and

better lives. When I think of

programs like GNU Emacs, or TeX

or LaTeX, these are packages that

started with singular creative genius,

but were then enhanced by

thousands of others with brains and

hearts just as strong. There are many

other examples of course. The

important thing is that flourishing of

creative freedom must never be

throttled, it must always be defended

and encouraged, and people must not

lose heart when it comes to the FSF's

fundamental purpose of fighting for

this freedom.

The FSF needs to rise to meet

these challenges, and that includes

doing work on itself. The Board

recognizes there have been flaws in

our governance. We listen to and

discuss at great length all that is

written or said, both helpful

suggestions as well as harsh criticism.

We take all of it to heart. This year

in particular, in 2021, the Board has

met very often with the aim of

addressing these issues. For many

years, we met twice a year for a day

or two. Since March, we have been

meeting two to four times a week,



efforts to either get them freed, or

replace them with equivalent free

packages. When someone installs

software using a package manager,

it does not currently verify whether

its license is free or not. Manually

checking the license of one package

is not very difficult, but some can

have 100+ dependencies.

Completing a due diligence license

check becomes exponentially

difficult and time consuming

without automation. Most

repositories keep track of the

licenses of the software stored

within them, but the quality of

repository license data varies.

Fully free GNU/Linux

distributions that follow the Free

System Distribution Guidelines

(u. fsf. org/i7 ) handle this

issue by using their own system

repositories that only contain free

software and by removing most

additional programming-language-

specific package managers from

their repositories until a solution is

worked out. When additional

programming-language-specific

packages are required, the user will

be faced with a broken workflow

that will need to be manually

resolved by either installing it

outside of their main package

manager or by using a different

operating system that does not

remove packages.

Stable distributions such as

3

programming-language-specific

package manager is a package

manager built to aid or extend the

functionality of a given

programming language by

aggregating programs and modules

that are specifically written for a

programming language. Nearly

every modern, popular

programming language has at least

one package manager and

repository available. Unfortunately,

it can be difficult to track the mix

of free and nonfree licenses for

dependencies when using these

package managers.

Why do we have all of these

package managers when

GNU/Linux systems usually

include a package manager

already? Many programming

language packages are maintained

by GNU/Linux distributions and

found in the operating system's

repository, but the number of

packages that are found in the

repository is a small subset of the

total number for each

programming language.

Ideally all software would be

free. We should be able to easily

identify any nonfree packages that

are widely used and organize

A

Keeping track of freedom
while managing packages
By Michael McMahon

Web Developer



Trisquel, Debian, or Ubuntu lock

their package versions at the time

of release and maintain updates to

those packages only with security

patches. When using a

programming language package

manager with a potentially older

(up to five years old) version with

new security updates of the

programming language, users

should expect to run into unmet

dependency requirement problems.

The common solution for this is to

use programming language version

managers; these can install

different versions of a programming

language environment concurrently.

When a version manager

installs a new version of a

programming language, each

4

installed instance is expected to

include a programming-language-

specific package manager built for

that version. Manually modifying

package managers and repositories

for all of these additional

programming language installations

would be difficult.

I will propose a few ways in

which we can approach solutions

for the issue, but we really need a

community effort if we are to

improve the situation. The best

way to handle macro issues at scale

is to work upstream and convince

package managers and repository

maintainers that this is an issue,

and most importantly to offer help

building and maintaining solutions.



FOSSology, Licenseutils, and

ScanCode Toolkit to help scan

repositories for license compliance.

Developing interpretative

automation for these free software

tools would help the licensing

community.

Community review: If tools are

not built to aid the repositories in

automatic license compliance,

repository maintainers are unlikely

to change systemically. A large

number of volunteers could

manually review repositories and

submit corrections.

Alternative repositories: When

repositories are unwilling or unable

to implement the changes,

alternative repositories could be

maintained by members of the free

software community.

All of these layers of

abstraction were built to make

things simpler, but their long term

effect is that in the process of

making things simpler, it has made

it difficult for people to know and

understand the software that they

use. We have a track record of

working through major issues and I

am optimistic that if we jump on

the issue now, we can solve it

together.

5

Package manager configuration:

Package managers should have the

configuration option to exclude

packages that were deemed to be

nonfree based on license data.

Fork: If the upstream package

managers are not interested in

merging this functionality, forks

could be maintained that have this

feature. If a fork is the solution, I

would propose the fully free

GNU/Linux distributions band

together to build and maintain

such a tool. The version managers

would also need the ability to

install the fork.

Self-reporting licenses: At the

very least, repositories should

require reporting the license of a

package in order to submit a new

entry. Most repositories do

mandatory license self-reporting at

this point which is an important

first step.

Automated license compliance

scanning: The SPDX (spdx. org)

project keeps an exhaustive list of

license text and standard license

headers that can be leveraged by

license compliance software to

better scan projects for license

compliance and verify license

information kept by repositories.

The Free Software Directory

(u. fsf. org/ky) teams use



Nominate someone for the
Free Software Awards

today!

fsf. org/awards

ust using free software makes

you part of our collective

journey to freedom, but some go

above and beyond in their

dedication to the free software

movement. Now, it's time for us to

show those community members

and projects that we appreciate

their vital work.

The Award for the Advancement

of Free Software;

The Award for Projects of Social

Benefit; or

The Award for Outstanding New

Free Software Contributor.

LibrePlanet 2022:
Living Liberation

Sessions are now open at
my. fsf. org/lp-call-for-

sessions

ll of us play a role in creating

free software: developing it,

distributing it, sharing feedback

about it, and spreading both its

code and underlying message. From

the beginning of the movement,

and every day, users have

supplanted technological oppression

with empowerment.

The theme is about how people

make free software part of their

daily lives, one decision at a time,

and we want to hear from you!

Share how you integrate free

software in your life, your struggles

and successes, or explore the theme

through spheres of education,

licensing, medicine, government,

business, art, social movements, or

improving accessibility.

6

J

A



o all our associate members

around the world for

supporting free software.

T

7

Thank you...About the FSF's work in
2021



Get 10% off!

Support the FSF by

purchasing FSF merchandise!

Visit shop.fsf.org and

enter discount code FALL21,

11/01/21 - 01/15/22

8

or this issue of the Bulletin, and

as part of the FSF's commitment

to a free e-reader, Greg from the FSF

campaigns team conducted an

interview with Nicholas Bernhard,

the founder and Chief Executive

Officer of Nantucket E-Books. (See

u. fsf. org/3gp)

F

Freedom for authors and
readers: talking with
Nicholas Bernhard of
Nantucket E-Books
By Greg Farough

Campaigns Manager

Could you give a short description

of Nantucket E-Books and Shanty,

and what you hope to accomplish

with those projects?

Nantucket E-Books is a platform that

makes it easier for authors to create

and share really great e-books. The

first part is the e-books themselves:

they can be read in the browser, so

no special apps or devices are

required. They are mobile-

responsive, so they'll look good on

phones, tablets, or laptops. They

have interactive features you'd

expect: dark mode, notes, text

resizing, bookmarks. Audiobooks can

be built-in. The platform also

respects the reader's freedom:

GPLv3 or later for all the software

on the site, and the Web site is

compliant with the GNU LibreJS

browser extension.

Could you speak a little bit about

why you think having free tools to

read and edit e-books is important?

When I started this project, I knew

I would release it as free software

eventually, which happened with

v1.5. The most important reason, for

me, was being fair to the people

reading my e-books. Readers should

be able to see how the e-book is made,

and what makes the interactive

features work. Even if they don't

exercise that option, they should

know the option is there, or know

they can take it to someone who can

repair it or improve it. Fortunately,

there's more public awareness now,

at least for hardware, thanks to the

Right to Repair movement.

Stallman made some good points

in his \Danger of E-Books"

(u. fsf. org/3gt) flyer. With

most modern e-books, you don't

really own the book. Sometimes

there's Digital Restrictions

Management (DRM) that prevents

the reader from sharing the book.



you could use volunteer support

fromthe free software community?

Ifso, what's the best wayfor them to

get involved?

The best way I can improve the site

for authors is to get feedback from

them, know what's working and what

isn't. In addition, the next step for

the site is a stronger back-end, where

authors can create accounts and

upload files through the site. If

anyone would like to help with that,

I would greatly appreciate it.

Nicholas can be reached at

nj b@nantucketebooks. com

or on IRC at

nantucketebooks. com/6667

Read the full transcript with extra

questions on

fsf. org/bulletin

9

You can't pay anonymously. Any

notes you make in a Kindle e-book

can be read by Amazon. They can

also pull the book from your device

if they feel like it. I wanted to go

against that trend. Just recently, a

friend of mine was listening to an

Audible book for book club.

Suddenly, the book stopped playing.

Later that day, the audiobook on

their phone had been replaced with

a newer edition that tied in with an

upcoming movie adaptation. I'm sure

your readers are familiar with the

Amazon 1984 incident.

Did you experience any kind of

technical and/or social challenges

during the development of

Nantucket E-Books or Shanty?

What were they?

I had a lot to learn about maintaining

a Web project: version control,

coordinating help from volunteers to

help debug, publicizing updates, and

making sure links work. By far the

biggest challenge was Arrowhead

(u. fsf. org/3gr) , which is a

browser-based text editor for

previewing Shanty text as e-books.

In essence, it's a graphical interface

for the text parser. They say that

adding a GUI to a software project

increases the complexity by an order

of magnitude, and I can certainly

confirm that!

Are there anytechnical areas where

Speaking of DRM

Join us for the International Day

Against DRM (IDAD), to be held

on December 10th 2021.



he GNU Affero General Public

License version 3 (AGPLv3) is

the most protective of computer

user freedom, yet it remains the

most misunderstood of the GNU

family of licenses. The AGPLv3

was created to solve a very specific

problem: how to protect a user's

rights when the program in

question is being utilized over a

network. In this article we will

cover where it came from, how we

benefit from it, and why a

developer should consider it.

T

10

The fundamentals of the
AGPLv3
By Craig Topham

Copyright & Licensing Associate

The AGPLv3 traces its origins

to a company called Affero, Inc.

(u. fsf. org/3gu) . Affero was

established in 2001, and they

provided a platform for interactive

\Web applications" like discussion

forums, mailing lists, email, and

blogs. Affero wanted to be sure

that users could access the source

code for these applications, and

that anyone who built derivatives

from them would also share alike.

The copyleft license of choice at

the time was the GNU General

Public License version two

(GPLv2). However, the GPLv2 was

written when the client/server

paradigm was not widespread; it

could not provide the copyleft

assurance desired for Affero's

platform. That is to say, one could

obtain Affero's source code, modify

it, and allow users access to the

program over a network without

the obligation of releasing its

source code to the public. With

this dilemma in mind and some

help from the FSF, the Affero

General Public License version one

was published in March 2002 by

Affero. In November of 2007, the

AGPL joined the GNU family of

licenses with version three, giving

us a freedom-protecting copyleft

license for an increasingly

networked world.

Simply put, the AGPLv3 is

effectively the GPLv3, but with an

additional licensing term that

ensures that users who interact

over a network with modified

versions of the program can receive

the source code for that program.

In both licenses, sections four

through six provide the terms that

give users the right to receive the

source code of a program. These

terms cover the distribution of

verbatim or modified source code

as well as compiled executable

binaries. However, they only apply

when a program is distributed, or

more specifically, conveyed to a

recipient. Using a program over a

network is not \conveying." It is

important to note that this only

applies to the code running on the

server, and not for example to the



encourage developers to consider

carefully whether their program

could be deployed by someone else

as part of a network service. By

choosing the AGPLv3 (or any later

version) in these situations, the

developer can future-proof their

program in case someone takes the

project in that direction. See

u. fsf. org/3gv for more

information when considering the

AGPLv3. To learn more about the

AGPL and the GNU family of

licenses, visit u. fsf. org/3gw.

11

JavaScript programs that your

browser may download and run

locally | these are conveyed to

you.

The AGPLv3 does not adjust

or expand the definition of

conveying. Instead, it includes an

additional right that if the program

is expressly designed to accept user

requests and send responses over a

network, the user is entitled to

receive the source code of the

version being used. For license

compatibility reasons, written into

section 13 of both the GPLv3 and

the AGPLv3 is the explicit

permission to link or combine any

covered work under the other

license. Paraphrased from the

GPLv3 section thirteen; you have

permission to link or combine any

covered work with a work licensed

under the AGPLv3 into a single

combined work. The GPLv3 license

will continue to apply to the part

which is the covered work, but the

special requirements of the

AGPLv3, section thirteen, will

apply to the combined work.

When confronted with a choice

between the AGPLv3 and GPLv3,

a developer may think that their

program doesn't need the extra

protection afforded by the

AGPLv3, but who knows what the

future may hold! For now, their

program does not get used over a

network, but someday it might. We

A note from the makers of
this Bulletin

ou might have noticed that this

is the first Bulletin in a very long

time that doesn't include an article

from our outgoing executive director

John Sullivan.

Y

We would like to thank John for

his years of contributions to this

publication and his dedication to free

software. The FSF staff is sad to see

him go, and wish him the best of luck

in his future endeavors.



Donate to the FSF with Bitcoin:

1CnyKZ26peigXyShTz

2664ReoUbMQM4RE4

Copyright © 2021

Free Software Foundation, Inc.

The articles in this Bulletin are

individually licensed under the

Creative Commons Attribution-

ShareAlike 4.0 International

license.

https: //creativecommons. or

g/licenses/by-sa/4. 0/

Published twice yearly by the Free

Software Foundation, 51 Franklin

Street, 5th Floor, Boston, MA

02110-1335, (617) 542-5942

info@fsf. org

This Bulletin was produced using

all free software, including

Inkscape, Scribus, and GIMP.

How to get involved:

Associate Membership:

Become an associate member of

the FSF. Members will receive a

bootable 16GB USB card, email

forwarding, access to the FSF

videoconferencing server, and an

account on the FSF's

Jabber/XMPP server. Plus:

participate in our members

forum at

forum. members. fsf. org! To

sign up or get more information,

visit member. fsf. org or write

to membership@fsf. org.

Online: Make a donation at

donate. fsf. org, or contact

us for more information on

supporting the FSF.

Jobs: List your job offers on our

jobs page: fsf. org/j obs .

Free Software Directory:

Help update and add to

thousands of different free

software projects:

directory. fsf. org.

Volunteer: To learn more, visit

fsf. org/volunteer.

LibrePlanet: Find local groups in

your area or start your own at

libreplanet. org! And join

us for the yearly LibrePlanet

conference next spring.

Free Software Supporter: Receive

our monthly email newsletter:

fsf. org/fss .

IMAGE CREDITS

Page 4: Image by Michael McMahon

Page 5, 6, 7: Images by Zoe Kooyman

All images Copyright © Free

Software Foundation, Inc., licensed

under a Creative Commons

Attribution ShareAlike 4.0

International license.


